Simulation of transport processes and chemical reactions in building materials
نویسندگان
چکیده
Usually the prediction of the lifetime of building materials is based on costly and time-consuming laboratory experiments. Numerical simulation of transport processes and the resulting chemical reactions in building materials is a versatile tool to estimate durability and corrosion processes of structures. Several studies exist on the characterization of reactions in porous building materials and the resulting deterioration [1]. Chemical reactions between corrosive media and mineral building materials take place on the material surface as well as in the pore volume. Thus the program TransReac combines two main modules: chemical reaction involving thermodynamics and kinetics and the transport of species into pores [1,2]. Using thermodynamic parameters of involved species and experimental determinated transport characteristics of the examined building materials, reactions depending on time and position were simulated. Gibbs energy, density and other thermodynamic parameters, e.g. heat capacity can be found in [3,4]. This database is proved successful in building material research. Different kind of chemical attack to mineral building material were simulated and verified by experimental data, e.g. corrosion caused by sulphate or ammonium solutions, acid and debonding of gypsum plaster [1,2]. The paper is concentrated on the dissolution of silica from aggregates in alkaline concrete pore solution at various temperatures, in regard to the simulation of the initial phase of alkali-silica-reaction of concrete.
منابع مشابه
Software for Kinetic Process Simulation (RESEARCH NOTE)
The relationship between velocity of chemical reactions with activities or concentrations of their reactants, temperature and pressure and the mechanisms through which the reactions proceed are of interest to many scientists and engineers. The purpose of this article is to introduce a computer software that is developed for calculation, classification and collection of such data. The applicatio...
متن کاملEngineering of Membrane Gas Separation Processes: State of The Art and Prospects
Membrane processes are today one of the key technologies for industrial gas separations and show growing interest for future use in sustainable production systems. Besides materials development, dedicated engineering methods are of major importance for the rigorous and most efficient design of membrane units and systems. Starting from approaches based on simplified hypotheses developed in the 5...
متن کاملAdvance Modelling and Simulation of Industrial Boilers
This paper presents some of the results of the simulation in the radiation section of an industrial boiler using an advanced mathematical model. Calculations are described for the flow, heat transfer, and chemical reaction processes occurring within a gas-fired cylindrical furnace. The calculation procedure is a two dimensional one in which the main hydrodynamic variables are the velocity and s...
متن کاملTutorial Review: Simulation of Oscillating Chemical Reactions Using Microsoft Excel Macros
Oscillating reactions are one of the most interesting topics in chemistry and analytical chemistry. Fluctuations in concentrations of one the reacting species (usually a reaction intermediate) create an oscillating chemical reaction. In oscillating systems, the reaction is far from thermodynamic equilibrium. In these systems, at least one autocatalytic step is required. Developing an instinctiv...
متن کاملModeling and Simulation of Alternative Injections of CO2 and Water into Porous Carbonate Formations
Water alternating gas (WAG) technique is used in the petroleum industry to inject carbon dioxide (CO2) into underground formations either for sequestration or enhanced oil recovery (EOR) processes. CO2 injection causes reactions with formation brine or aquifer and produces carbonic acid, the acid dissolves calcite and changes flow behavior significantly. Modeling and investigating effects of CO...
متن کامل